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Electronic wavefunctions in a space of constant curvature 

N Bessis and G Bessis 
Laboratoire de Spectroscopie et de Luminescence, Universitt Claude Bernard, Lyon I, 
69621 Vitleurbanne. France 

Received 31 October 1978 

Abstract. The determination of atomic wavefunctions when the usual Euclidean flat space 
is substituted by a spherical 3-space is investigated. Introducing hyperspherical coordinates 
(x, 0, c p )  and the ‘curved’ form (1/R) cot ,y of the Coulomb potential, ‘curved hydrogenic 
orbitals’-solutions of the non-relativistic wave equation--are obtained using the ladder 
operator technique. A multipolar expansion of the bi-electronic repulsion potential is 
given, allowing the computation of curvature-dependent bi-electronic repulsion integrals. 
Some interesting features of this ‘curved model’, which of course gives again the usual flat 
results (as the radius of curvature R -B CO), are pointed out. 

Firstly we have to say that the aim of this paper is not at all to dare to introduce? the 
extremely feeble curvature of the Universe, related to gravitational theories, into 
atomic calculations in order to take into account its additional energetic contributions. 
Nevertheless, it should not be very surprising that even the slightest modification of the 
structure of the physical space could modify the wavefunctions and spectrum 
significantly. For instance, as first pointed out by Schrodinger (1940), the consideration 
of curvature may present some interesting features, such as resolving the continuous 
hydrogenic spectrum into an intensely crowded line spectrum. Furthermore, from a 
computational point of view, the radius of curvature R can be considered merely as an 
additional parameter to be adjusted in a variational calculation, i.e. more physically, 
that would amount to compensating for the lack of electronic correlation by a local 
modification of the geometry. From a practical point of view one could also question 
whether the consideration of a curvature parameter could possibly be used as an 
expedient to find more easily the usual flat results at the limit R + 00. Finally it may be 
also advantageous to transform the radial variable r, with infinite range [O,m], of the flat 
space into an angular variable x, with finite range [0, TI. For all these reasons and 
others unformulated, it seems worthwhile to explore the tractability of the problem. 
Even though a relativistic approach, via the covariant Dirac equation, would be 
expected to be more consistent with curvature considerations, as a first step we shall 
essentially investigate, within a non-relativistic ‘curved’ model, the ‘curved’ form of the 
electrostatic Coulomb potential. Magnetic interactions, via the Dirac-Pauli covariant 
equations, will be considered elsewhere (Bessis er a1 1978). 

Let us substitute for the usual three-dimensional Euclidean flat space a ‘curved 
space’ with constant positive curvature, i.e. a three-dimensional hypersphere imbedded 
in a four-dimensional Euclidean space. This simple model of a closed universe ensures 

t Except maybe when dealing with some cosmological effects (Davies 1976). This is really far from our 
purpose. 
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spatial isotropy and homogeneity. Solutions of quantum mechanical problems in this 
curved space would be expected to converge towards solutions of the flat space 
problems in the limit as the radius R of the space increases to infinity. Extending the 
ordinary spherical scheme in a four-dimensional Euclidean space Ed, the Cartesian 
coordinates become 

x 1  = R sin x sin 6 cos Q, 

x 3 =  R sinx cos 8, 

x 2  = R sinx sin 8 sin Q, 
4 (1) 

x = R COSX. 

Now consider the three-dimensional subspace such that Zi  (xi) ’  = R 2 ,  where R is a 
constant. When 8 and Q lie within their traditional bounds 0 S q S 27r, 0 S 8 G T, the 
surface of this hypersphere is scanned in just one way when 0 C x C T. The line element 
of this spherical 3-space is 

(2) 

If we let R + 00, x + 0 so that XR = r remains finite, this line element reduces to that of 
Euclidean space, in which r, 8, cp are the usual polar coordinates. The infinitesimal area 
of the hypersphere is given by 

(3) 

ds2 = R2[dx2+sin2 X(d02+sin2 8 dcp2)]. 

dT = R 3  sin2 x sin 8 dx d8 dq. 

The Laplacian operator is 

where 1 is just the usual three-dimensional angular momentum vector operator. 

and has the form 
We shall assume that a time-independent N-electron Schrodinger equation holds 

N 

i = l  i 4 j  

where ET is the energy in standard units. We have to specify the form of the 
electrostatic potentials V, and Vi+ We demand that Vi -+ l / r i  as R + 00, xi + 0 and 
xiR = ri, and that Vij + l / r i p  

The required Coulomb potential function Vii must depend only on the interparticle 
distance and, moreover, has to be an harmonic function, i.e. the solution of the Laplace 
equation V: Vij = Vi” Vij = 0. The ‘angular separation’ wii between two particles i and j 
located on the hyperspace imbedded in E4 is defined by 

A . 1  

From (1) we obtain 

cos wij  = cos xi cos xi +sin xi sin xi cos yij, (7) 

with 

COS yii = COS ei cos e, +sin ei sin e, cos(cpi - pi). 
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In particular the angular separation between a current point Pk, 8, cp) of the hyper- 
sphere and the origin O(x' = x 2  = x 3  = 0, x4 = R )  is cos w = cos ,y and, as expected, the 
Coulomb potential Vi is a function of the single variable xi. Hence, in order to obtain 
the interparticle potential Vi, one has first to find the single-variable harmonic potential 
V k )  and substitute oij for x. From (4), Vk) is the solution of the Laplace equation 

The required solution is (Schrodinger 1941, Teague and Thomas 1973) 

V = (cot ,y)/R, (9) 

Vj = (cot ~ i j ) / R .  (10) 

and consequently 

Indeed, this solution is well behaved in the sense that for R + CO it converges to the 
correct flat limit. Since the geodesic distance between particles i and j is rii = Rwii 
(Eisenhart 1926), 

Let us now consider the determination of the 'curved' hydrogenic orbitals. The 
one-electron Schrodinger equation is 

where 2 is the charge of the nucleus which is assumed to be fixed at the origin. The 
separation of variables is obviously achieved by setting 

4 =Ywy;"(e, cp)=(l/sinX)U(X)Y;"(e,cp), (13) 

where the Y;" are the usual spherical harmonics. Thus U ( x )  has to be a square 
integrable solution of the equation 

with A = 2R2E + 1. 
As pointed out by Schrodinger (1940), the ladder operator method is particularly 

suitable for solving the eigenequation (14). Within the Infeld and Hull (1951) 
classification, this equation is a type E (class I) factorisable equation. When introducing 
the usual radial quantum number n, with the associated quantification condition 

n - 1 - 1 = v,  (15) 

where t~ is a non-negative integer, one obtains the following expressions of the 
eigenvalues: A, = n 2 - Z 2 R 2 / n 2 .  Hence the energy levels are 

(16) 
This expression was first obtained by Schrodinger (1941), who put in evidence the 
unusual and interesting feature of the Kepler motion in the hypersphere. Indeed, there 
are now only discrete states, and the passing through zero of the energy levels is allowed 

E, = -Z2/2n2+ ( n Z -  1)/2R2. 
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by continuity as n increases. As pointed out from the beginning, the additional 
curvature contribution to the flat transition energies is ridiculously small when R is 
taken to be the Universe radius of curvature (R = cm) (Steinmetz 1967). Never- 
theless, the discretisation of the spectrum due to the closure of the Universe may have 
advantages in atomic calculations. 

Using previous results (Hadinger et a1 1974), the eigenfunctions U,,/ of (14) are 
obtained in closed form, i.e. the following expressions of the ‘pseudo-radial’ part Ynr(,y) 
of the ‘curved’ hydrogenic orbitals: 

where 

A = (-n -i ZR/n, -n -ti ZR/n), 

U is given by (15) and Nnl is the normalisation constant, such that 

In spite of the presence of the imaginary quantities, the Jacobi polynomial P:‘ in (17) 
is a real polynomial of cot x. For instance, for n = 3 and U = 1, 

93,(x) = N3p sin2 x e-ZRx’3(~ot x -ZR/6). (19) 

Since the orbitals (17) depend on R through the product ZR, one may conclude that 
there is equivalence between screening effects and a local curvature variation, i.e. 
within a variational calculation it is the same to vary the charge 2 or the R parameter of 
the orbital. 

Extension of the one-electron model to many-electron calculations can be done 
within the usual independent particle framework using determinant wavefunctions 
built on a basis of ‘curved orbitals’. In the many-electron Schrodinger equation (5 ) ,  the 
inter-electronic repulsion potential (corresponding to the flat limit l/rij) is now 
(cot wij)/R (equation (10)). When calculating the many-electron energies and wave- 
functions, the most difficult integrals to compute are the two-electron (cot wij)/R 
integrals. 

Using the Fourier expansion of cos w (Dwight 1934) one may write 

k sin2kwij 
(0 < wii < v, exclusive). 1 8 

R wR k = l  4k2-1 sinwij 
-cot wij = - 5 
Next, using the hyperspherical expansion of sin 2kwlsin w (Fock 1935), one obtains the 
(xi, xi )  symmetrical expression 

where the nr(2k,  x)  are the Fock functions related to the Gegenbauer polynomials. 
These I11(2k, x )  are solutions of a factorisable eigenequation (type A, class I) and easily 
obtainable in closed form. 
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The bi-electronic repulsive integral is readily integrated in 6 and cp using '3j' 
symbols: 

where 

In (22) the range and parity of 1 are, as usual, restricted by the non-vanishing conditions 
of the 3j symbols. The integrals I k /  can be calculated in closed form. One interesting 
consequence of expansion (22) is that the bi-electronic radial integral (in x)(ll)l is 
factorised, but on the other side one has to sum an infinite series which is rather tedious 
to perform. This symmetrical expansion has to be compared with the flat limit 

where the j r ( x )  are the spherical Bessel functions. 

convenient to define the nr(2k, x) functions by their Rodrigues formula 
An alternative expansion of (cot q ) / R  can be obtained. For this purpose it is more 

2k(sin x)' d 
nd2ky *)' 4k2(4k2 - 1) . . . (4k2 - 12) 

One can write 

where 

k 2  cos kx m M'(x'=zl (k2-1/4)k2(k2-1/4). . . (k2-12/4)' 

Starting from MO, which can be found elsewhere (Gradshteyn and Ryzhik 1965), these 
series can be calculated recursively when 0 d x d 7r, i.e. when 

0 s x i  'Xj d 7r. (29) 

After some manipulations, one obtains the required expansion of (cot wij)/R in terms 
of xi and xj subject to condition (29) involving xi 2 xi. When introducing the traditional 
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ilotation x, and x<, this expansion becomes 

with 

The expansion (30) of(cot o i j ) / R  in terms of the harmonic solutionsFl Y;" and GIY;" is 
the 'curved' homologue of the Laplace expansion 

It can be easily verified that, as expected, when R + 0, x + 0 and X R  = r, the Fl (x) and 
GI(x) functions converge to the flat radial harmonic functions (l/r)'+* and rf respec- 
tively. 

FI(x) is a polynomial of degree (1+1) in cotx, while GI = 
(-)'+'[(21+ 1)!!(21- l)!!/(f + l)!(f- l)!]XFl+ g&), where gI(x) is also a polynomial of 
degree I in cot x and of parity 1. In particular, the dipolar ( I  = 1) and quadrupolar (I = 2) 
terms can be written 

F~ (x = 1 /sin2 x, 

F2(x) = cot x/sin2 x, 

Gl(x) = :(x/sin2 x -cot x), (33) 
~ ~ k )  = $(3x cot x/sin2 x + 1 - 3/sinz x). 

It seems to us that the expansion (31) is more suitable than (21) for computing the 
integrals. Indeed, the ((cot w i j ) / R )  integral can be finally reduced to the calculation of 
elementary integrals I exp(-2ZR~/n) (sin x)'(cos x)" d x with p and q non-negative 
integers and with two types of intregration bounds [0, x] and [x, tr/2]. As an illustrative 
example, one finds 

). (34) 
1 1 ZR(5Z2R2+ 1) coth ZRT+ trZ2R2(Z2R2+ 1) 

( l s l sEco tw,1s l s  ) =- R ( 2(4Z2R2+1) 2 sinh' ZRT 

When R + CO, it can be checked that the first term of (34) converges toward the expected 
flat limit iZ, while the second term vanishes. 

Anticipating further results concerning the fine structure terms of the Hamiltonian 
(Bessis et al), it should be interesting to note that within the 'curved' model the 
quadrupolar parameter (Fz) = (cot X/sin' x )  and the Landt parameter { l/sin3 x )  have 
different expressions, although their flat limit {r-3) is the same. This result is to be 
compared in some way with the differentiation between dipolar magnetic and quadru- 
polar electric hyperfine (r-3> parameters in the Dirac model (see e.g. Armstrong 1971). 

Let us finally mention that when one considers a space of constant negative 
curvature (open space) instead of a space of positive curvature (closed space) the 
problem is also tractable. Briefly stated, one has to make the following changes: x + i x, 
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R + i R, Vk) = (cot x)/R + (coth x - l)/R. But, as has been shown by Infeld and 
Schild (1949, the hydrogenic spectrum exhibits a finite number of discrete energy 
levels in addition to a continuous spectrum. In this last case, the determination of 
electronic wavefunctions has not been considered. 
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